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SUMMARY

Circadian rhythms, metabolism, and nutrition are
intimately linked [1, 2], although effects of meal
timing on the human circadian system are poorly
understood. We investigated the effect of a 5-hr
delay in meals on markers of the human master
clock and multiple peripheral circadian rhythms.
Ten healthy young men undertook a 13-day labora-
tory protocol. Three meals (breakfast, lunch, dinner)
were given at 5-hr intervals, beginning either 0.5
(early) or 5.5 (late) hr after wake. Participants were
acclimated to early meals and then switched to
late meals for 6 days. After each meal schedule,
participants’ circadian rhythms were measured in
a 37-hr constant routine that removes sleep and
environmental rhythms while replacing meals with
hourly isocaloric snacks. Meal timing did not alter
actigraphic sleep parameters before circadian
rhythm measurement. In constant routines, meal
timing did not affect rhythms of subjective hunger
and sleepiness, master clock markers (plasma
melatonin and cortisol), plasma triglycerides, or
clock gene expression in whole blood. Following
late meals, however, plasma glucose rhythms
were delayed by 5.69 ± 1.29 hr (p < 0.001), and
average glucose concentration decreased by
0.27 ± 0.05 mM (p < 0.001). In adipose tissue,
PER2 mRNA rhythms were delayed by 0.97 ±
0.29 hr (p < 0.01), indicating that human molecular
clocks may be regulated by feeding time and
could underpin plasma glucose changes. Timed
meals therefore play a role in synchronizing periph-
eral circadian rhythms in humans and may have
particular relevance for patients with circadian
rhythm disorders, shift workers, and transmeridian
travelers.

RESULTS

No Change in Rhythms of SCN Clock-Driven Hormones,
Markers of Sleep, or Subjective Appetite
Mammalian circadian rhythms are driven by a master clock,

within the suprachiasmatic nuclei (SCN) of the hypothalamus,
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and peripheral clocks located throughout the body [3]. For

the circadian system to function optimally, individual clocks

must be correctly synchronized to one another and to the

external environment. Abnormal circadian rhythms or defects

in synchronization pathways can result in circadian misalign-

ment or desynchrony, which are associated with poor health

and metabolic disorders [4, 5]. In most individuals, the SCN

clock is set to solar time by photic input pathways originating

in the retina [6]; the SCN then synchronize peripheral clocks

through neuronal pathways, hormone rhythms, core body

temperature, and behaviors such as the cycle of feeding and

fasting [3]. Photic cues are of primary importance for resetting

human rhythms [7]. Regularly timed non-photic cues, however,

can regulate rhythms in non-human species; for example, tem-

poral restriction of food availability resets the phase of rodent

peripheral clocks [8, 9], with more subtle effects on the rodent

SCN [10]. Human studies have revealed that post-prandial re-

sponses are dependent on meal timing [11–14], but little is

known of the ability of meals per se to alter the timing of hu-

man circadian rhythms.

We investigated a 5-hr delay in three isocaloric daily meals

(breakfast, lunch, and dinner) with identical macronutrient con-

tent on circadian rhythms using a 13-day laboratory protocol

(Figure 1A). The overarching hypothesis was that the delay in

meal timing delays peripheral rhythms, but not markers of the

SCN clock. Phase changes were indirectly assessed by meal

3 time-of-day interactions in ANOVA analysis of grouped data

and directly assessed by cosinor analysis of individual partici-

pant data (see STAR Methods).

We first measured the effect of meal time on plasmamelatonin

and cortisol rhythms, which are well-validated markers of the

SCN clock. No significant changes were found in the temporal

profiles of either hormone (Figures 1B and 1C). Next, in each in-

dividual, melatonin phase was measured using the dim light

melatonin onset (DLMO), and cortisol acrophase was calculated

using cosinor analysis. Delayed meals had no significant effect

on either DLMO or cortisol phase (DLMO: t(9) = 0.94, p = 0.372;

cortisol: t(9) = 0.96, p = 0.182; paired t test).

As sleep disruption is known to modulate metabolic physi-

ology [15], we assessed subjective sleepiness throughout each

constant routine using the Karolinska Sleepiness Scale (KSS).

The expected temporal variation was observed, but there was

no significant effect of meal timing (Figure S1). Furthermore,

we were unable to detect any effects of meal timing on objective

markers of sleep assessed by actigraphy (Figure S1). We as-

sessed the influence of meal time on subjective appetite using

a visual analog scale (VAS) but again found no significant effect

(Figure S2).
ors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Study Protocol and Phase of SCN-Driven Hormone Rhythms

(A) In order to maximize circadian entrainment prior to beginning the study protocol, participants maintained a self-selected pre-laboratory light-dark and sleep-

wake pattern based on their habitual routine for 10 days. During the last week of the pre-laboratory period they ate breakfast (B) 30 min after wake, lunch (L) 5.5 hr

after wake, and dinner (D) 10.5 hr after wake. Participants then entered the laboratory on day 0. During days 0–3, participants remained on their self-selected

sleep-wake cycle. They slept in individual bedrooms in darkness (0 lux; black bars) and were awake in bright room light (�500 lux in direction of gaze) during the

day. Waking time was spent in communal areas (white bars) and in individual rooms (dotted bars). Isocaloric meals (B, L, D) were given 0.5, 5.5, and 10.5 hr after

waking up, matching the week of pre-laboratory meal timing. On day 4, participants began a 37-hr constant routine in individual rooms (<8 lux; gray bars).

Participants had a standard night’s sleep on day 5, before 6 more days of the sleep-wake and light-dark cycles (days 6–11). Conditions were equal to days 1–3

except for a 5-hr delay in all meal times. A second constant routine then commenced on day 12. Immediately before and after each constant routine, participants

were kept in a constant routine-like environment but allowed to move within their rooms (hatched bars).

(B and C) Concentration of melatonin (B) and cortisol (C) in hourly plasma samples collected in constant routine conditions. Black circles with solid lines represent

data following early meals (0.5, 5.5, and 10.5 hr after waking up). White squares with dashed lines represent data following a 5-hr delay in each meal. Two-way

repeated-measures ANOVA revealed a significant effect of time (melatonin: F(31, 279) = 19.00, p < 0.001; cortisol: F(31, 279) = 20.31, p < 0.001), but no significant

effect of meals (melatonin: F(1, 9) = 2.97, p = 0.119; cortisol: F(1, 9) = 2.27, p = 0.166) or meal 3 time interaction (melatonin: F(31, 279) = 0.13, p = 0.124; cortisol:

F(31, 279) = 1.39, p = 0.090). Data are mean ± SEM, n = 10. Statistical significance is defined as p < 0.01 (following Bonferroni correction for analysis of a total of five

rhythmic plasma markers).

See also Figures S1 and S2.
Plasma Glucose, but Not Insulin or Triglyceride,
Rhythms Are Affected by Meal Time
Plasma glucose concentration exhibited significant effects

of time of day, meals, and meal 3 time-of-day interaction (Fig-

ure 2A). In order to quantify the effect of timed meals on glucose

rhythm phase, we used cosinor analysis. The glucose acrophase

occurred 1.31 ± 0.82 hr before DLMO following early meals but

4.38 ± 0.83 hr after DLMO following late meals. The 5-hr change

in meal time delayed the relative phase of glucose rhythms by

5.69 ± 1.29 hr (Figure 2D).

The possible contribution of insulin to the delayed glucose

rhythms was also investigated. Despite a significant effect of

time of day, there was no significant effect of meals or meal 3

time-of-day interaction on plasma insulin concentration (Fig-

ure 2B). Cosinor analysis estimated an insulin acrophase
7.99 ± 1.99 hr after DLMO following early meals and 11.36 ±

0.89 hr after DLMO following late meals (Figure 2E).

There was a significant effect of time of day, but no significant

effect of meals or meal 3 time-of-day interaction on plasma tri-

glyceride concentration (Figure 2C). Cosinor analysis estimated

a triglyceride acrophase 6.59 ± 0.62 hr after DLMO following

early meals and 7.38 ± 0.30 hr after DLMO following late meals

(Figure 2F).

Differential Response of Clock Gene Rhythms in White
Adipose Tissue and Blood
To test the hypothesis that delayed meals delay molecular circa-

dian rhythms in peripheral tissues, we measured clock gene

transcripts in serial biopsies of white adipose tissue (WAT) using

a refinement of our previously published protocol [16, 17]. Gene
Current Biology 27, 1768–1775, June 19, 2017 1769



Figure 2. A 5-hr Delay in Meal Times Delays the Plasma Glucose Circadian Rhythm

(A–C) Concentration of glucose (A), insulin (B), and triglyceride (C) in 2-hourly plasma samples collected in constant routine conditions. Data are plotted asmean ±

SEM. Black circles with solid lines represent data following early meals (0.5, 5.5, and 10.5 hr after waking up). White squares with dashed lines represent data

following a 5-hr delay in each meal.

(A) There were significant effects of time (F(14,126) = 3.71, p < 0.001), meals (F(1, 9) = 29.84, p < 0.001), and meal 3 time interaction (F(14,126) = 5.10, p < 0.001) on

glucose concentration.

(B) There was a significant effect of time (F(14,126) = 2.79, p = 0.001), but no significant effect of meals (F(1, 9) = 4.69, p = 0.059) or meal3 time interaction (F(14,126) =

1.16, p = 0.312) on plasma insulin concentration.

(C) There was a significant effect of time (F(14,126) = 18.44, p < 0.001), but no significant effect of meals (F(1, 9) = 0.01, p = 0.913) or meal3 time interaction (F(14,126) =

1.19, p = 0.294) on plasma triglyceride concentration.

(D–F) Acrophase of glucose (D), insulin (E), and triglyceride (F) rhythms in individuals following early meals (constant routine 1, CR1; black circles) and following a

5-hr delay in meal time (constant routine 2, CR2; white squares). Using a paired t test, there was a significant effect of meal timing on glucose phase (delay of

5.59 ± 1.29 hr; t(9) = 4.415, p < 0.001), but not on the phase of insulin (t(9) = 2.179, p = 0.029; note Bonferroni-corrected critical p value below) or triglyceride (t(9) =

0.896, p = 0.197).

(A–F) Data are from n = 10 participants, calculated relative to each individual’s dim light melatonin onset (DLMO). Statistical significance is defined as p < 0.01

(following Bonferroni correction for analysis of a total of five rhythmic plasma markers).
expression was measured in the seven participants from whom

we were able to obtain five biopsies, one every 6 hr, in both

constant routines. Data were obtained by RT-PCR for three

canonical clock genes and Z scored prior to analysis (Figures

3A–3C). There was a significant effect of time of day, but no

overall effect of meals on all three genes. There was a significant

meal 3 time-of-day interaction for PER2, but not for PER3 or

BMAL1. Cosinor analysis also revealed a significant effect of

meal timing on PER2 phase, but not on the phase of PER3 or

BMAL1 (Figures 3D–3F).

We next studied clock gene rhythmicity in whole blood sam-

ples. Consistent with previously published constant routine

data [18], we found weak rhythms in BMAL1 (Figure S3A) and

robust rhythms in PER3 gene expression (Figure S3B). However,

no significant effect of delayed meals on either rhythm was

observed.
1770 Current Biology 27, 1768–1775, June 19, 2017
Reduced Glucose Concentration Following Late Meals
Two-way repeated-measures ANOVA analysis of the time series

data indicated a significant decrease in glucose concentration

in the constant routine following late meals (Figure 2A). To inves-

tigate this in more detail, we compared each participant’s mean

glucose concentration in the two constant routines. There was a

significant decrease in themean glucose concentration following

late meals (Figure 4A), with all ten of the participants exhibiting

lower plasma glucose after late meals. There was, however, no

significant decrease in the mean concentration of plasma insulin

(Figure 4B) or triglyceride (Figure 4C) following late meals. We

next compared the peak and trough values for each partici-

pant in each constant routine to determine whether the lower

glucose concentration was due to a reduced peak, trough, or

both (Figure 4D). There was an overall effect of meals and a sig-

nificant difference between peak and trough values. There was



Figure 3. A 5-hr Delay in Meal Times Delays Clock Gene Rhythms in White Adipose Tissue

(A–C) Temporal expression profiles of PER2 (A), PER3 (B), and BMAL1(C) in 6-hourly white adipose tissue biopsies collected in constant routine conditions. Data

are plotted as mean ± SEM. Black circles with solid lines represent data following early meals (0.5, 5.5, and 10.5 hr after waking up). White squares with dashed

lines represent data following a 5-hr delay in each meal. Two-way repeated-measures ANOVA revealed a significant effect of time for PER2 (F(4,24) = 56.81, p <

0.001), PER3 (F(4,24) = 65.67, p < 0.001), and BMAL1 (F(4,24) = 21.44, p < 0.001). There was no overall effect of meal for any gene: PER2 (F(1,6) = 1.00, p = 0.356),

PER3 (F(1,6) = 1.07, p = 0.340), and BMAL1 (F(1,6) = 1.08, p = 0.339). There was a significant meal3 time interaction for PER2 (F(4,24) = 7.31, p < 0.001), but not for

PER3 (F(4,24) = 2.44, p = 0.075) or BMAL1 (F(4,24) = 0.58, p = 0.680).

(D–F) Acrophase of PER2 (D), PER3 (E), and BMAL1 (F) rhythms in individuals following early meals (CR1; black circles) and following a 5-hr delay in meal time

(CR2; white squares). Using a paired t test, there was a significant effect of meal timing onPER2 phase (delay of 0.97 ± 0.29 hr; t(6) = 3.35, p = 0.008), but not on the

phase of PER3 (t(6) = 1.77, p = 0.064) or BMAL1 (t(6) = 1.02, p = 0.174).

(A–F) Data are from n = 7 participants, calculated relative to each individual’s DLMO. Statistical significance is defined as p < 0.017 (following Bonferroni

correction for analysis of a total of three rhythmic adipose markers).

See also Figure S3.
no significant interaction between the two factors, however, indi-

cating a similar lowering of both peak and trough plasma glucose

following the late meals.

DISCUSSION

This report demonstrates that meal timing exerts a variable influ-

ence over human physiological rhythms, with notable changes

occurring in aspects of glucose homeostasis. A 5-hr delay in

meal times induced a comparable delay in the phase of circadian

plasma glucose rhythms, as assessed under constant routine

conditions. These altered glucose rhythms were accompanied

by a 1-hr delay in the phase of WAT PER2 rhythms, but no

change in markers of the SCN clock (melatonin, cortisol),

rhythms of plasma insulin and triglyceride, or clock gene rhythms

in whole blood. We also observed a reduction in plasma glucose

concentration during the constant routine following late meals.

To limit our intervention to meal timing, participants main-

tained identical light-dark and sleep-wake schedules on days
when timed meals were given. Sample collection then occurred

in constant routine conditions after both early and late meals.

Constant routines remove environmental fluctuations and sleep

and replace meals with equally spaced isocaloric snacks [19];

the rhythms obtained are thus the product of endogenous

circadian processes and not the result of acute post-prandial

responses. Subjective sleepiness and hunger exhibited the ex-

pected temporal patterns. Sleepiness increased over the course

of each constant routine, due to continuous wakefulness, and

was highest during the subjective night. Self-reported hunger

scores dipped in the early subjective morning, as observed by

others [20, 21]. Meal timing had no effect on these subjective

sleep and appetite markers, or actigraphic sleep parameters re-

corded prior to each constant routine, indicating that responses

to a shift in meal times are unlikely to be driven by changes in

sleep propensity or appetite.

Circadian regulation of plasma glucose and triglyceride con-

centration in humans has been reported by others using con-

stant routine [12, 13, 22] and forced desynchrony [14] protocols.
Current Biology 27, 1768–1775, June 19, 2017 1771



Figure 4. The Average Plasma Glucose Concentration in Constant Routine Conditions Is Reduced Following a 5-hr Delay in Meal Times

(A–C) 24-hr average concentration of glucose (A), insulin (B), and triglyceride (C) in plasma samples collected in constant routine conditions following early meals

(CR1; black circles) and following a 5-hr delay in meal time (CR2; white squares). There was a significant decrease in the mean glucose concentration following

late meals (5.45 ± 0.11 mmol/L) compared to early meals (5.72 ± 0.11 mmol/L, t(9) = 5.22, p < 0.001, paired t test). Following Bonferroni correction of the critical

p value, there was no significant decrease in the mean concentration of plasma insulin following late meals (208.2 ± 30.46 versus 192.6 ± 26.75 pmol/L, early

versus late, respectively; t(9) = 2.27, p = 0.049, paired t test). There was no significant difference in mean triglyceride concentration (1.22 ± 0.12 versus 1.21 ±

0.14 mmol/L, early versus late meals, respectively; t(9) = 0.26, p = 0.804, paired t test).

(D) Peak and trough concentration of glucose in plasma samples collected in constant routine conditions following early meals (black bars) and a 5-hr delay in

meal time (white bars). Using two-way repeated-measures ANOVA, there was an overall significant effect of meals (F(1, 9) = 22.98, p = 0.001), a significant dif-

ference between peak and trough values (F(1, 9) = 177.6, p < 0.001), but no significant interaction between the two factors (F(1, 9) = 0.01, p = 0.914). ***p < 0.001

(early meals/CR1 versus late meals/CR2). Data are plotted as mean ± SEM.

(A–D) Statistical significance is defined as p < 0.01 (following Bonferroni correction for analysis of plasma concentration in five markers). Data are from n = 10

participants.
In addition, one study has reported minor (�1 hr) phase shifts of

human temperature and heart rate rhythms following morning or

evening carbohydrate-rich meals, but with no effect on mela-

tonin timing [23]. Very little research has addressed how tempo-

ral aspects of feeding regulate the circadian system of humans,

however. The altered glucose rhythms in our study did not coin-

cide with changes in plasma insulin rhythms and could thus be

driven by altered rhythms of insulin sensitivity and/or glucose

release from storage tissues. We observed no change in plasma

triglyceride rhythm. Meal timing therefore appears to exert

greater control over glucose homeostasis than lipid metabolism

and can dissociate the temporal regulation of these key physio-

logical processes.

We also investigated the effect of meal timing on markers of

both central and peripheral circadian clocks. On the basis of pre-
1772 Current Biology 27, 1768–1775, June 19, 2017
vious animal and human experiments, we hypothesized that

meal time would not alter the phase of melatonin and cortisol

rhythms, reliable markers of the SCN clock. Clock gene rhythms

in the SCN of rodents permitted ad libitum quantities of food do

not synchronize to meal time [8, 9]. Furthermore, melatonin and

cortisol rhythms in totally blind humans do not readily entrain to

ad libitum non-photic cues [24]. Our melatonin and cortisol data

demonstrated no differences after early compared to late meals.

This suggests that the observed changes in rhythms of meta-

bolic parameters are SCN independent, presumably occurring

via effects on peripheral clocks.

Data from animal studies indicate that circadian clocks in

multiple peripheral tissues contribute to glucose homeostasis

[25–30]. We therefore tested the hypothesis that late meals delay

the phase of human peripheral clocks. We and others have



previously demonstrated robust gene expression rhythms in se-

rial WAT biopsies and blood samples [16, 18, 31, 32]. Here we

observed a significant 1-hr delay in WAT PER2 expression.

Although this change is smaller than the phase delay of plasma

glucose rhythms, it nonetheless indicates for the first time

that feeding patterns may be capable of synchronizing human

peripheral clocks. Based on the differential resynchronization

rate of murine clocks to food [8, 9], we predict that the effect

of meal time on clocks in other peripheral tissues involved in

glucose homeostasis (e.g., liver, pancreas) would be larger

than in WAT. Indeed, tissue-specific responsiveness of periph-

eral tissue clocks is demonstrated by the lack of shift in PER3

rhythms in our blood samples.

Mean concentration of plasma glucose was 0.27 mM (4.7%)

lower following late meals. The reduction of both peak and

trough concentrations implies lower plasma glucose across the

circadian cycle, with no change in rhythm amplitude. The cause

of this change is unknown, but may involve the uncoupling of

clocks in tissues that regulate glucosemetabolism. Alternatively,

experimental design may have resulted in an order effect on

glucose, but not triglyceride, concentration. Order effects are

extremely unlikely to contribute to the reported phase delays,

however, asmetabolite and gene expression data were analyzed

relative to each individual’s endogenous melatonin phase. It is

currently unclear how plasma glucose concentrations in a con-

stant routine, where participants receive small hourly snacks,

relate to the elevated post-prandial glucose excursion that oc-

curs in the biological evening and night, compared to the early

morning [12, 13]. These questions will be the focus of future

research.

Limitations of the current study include the restricted partici-

pant demographics (all young men) and the fact that it is impos-

sible to serially biopsy most human tissues closely associated

with glucose homeostasis. The use of tightly controlled demo-

graphics is standard for this type of human laboratory trial.

However, now that we have identified physiological responses

in young male volunteers, it will be possible to target future

studies to other groups. Serial sampling of human tissues has

obvious practical considerations, limiting the number of study

participants and the sampling resolution. Use of our WAT biopsy

protocol has nonetheless enabled us to uncover novel effects of

meal timing on gene expression rhythms in a metabolically

important human tissue.

Our study reveals clear effects of meal timing on glucose ho-

meostasis in a controlled laboratory setting. It is possible that

timed meals could have a different effect on individuals not as

tightly entrained as our study participants. Nonetheless, the im-

plications of this novel finding include insight into the effects of

eating behavior on human physiology, e.g., in patients with night

eating disorder. The most wide-ranging impact, however, could

be an addition to the existing light and sleep strategies for treat-

ing people with circadian desynchrony, which occurs following

shift work and transmeridian flight. Prolonged desynchrony

and shift work have been associated with obesity and cardiome-

tabolic disease, so measures to appropriately synchronize the

circadian system could benefit long-term health in many people.

Timed interventions such as light exposure, or administration of

oral agents including melatonin and caffeine, regulate the phase

of human SCN-driven hormonal rhythms [33–37]. Oral adminis-
tration of glucocorticoid can also phase shift clock gene rhythms

in human blood mononuclear cells [38]. We now provide a non-

pharmacological means by which some peripheral metabolic

rhythms can be phase shifted in humans. Future work will need

to examine the effects of timed meal patterns in simulated and

real-life models of human jet lag and shift work. Animal studies

[39] indicate this could be a very fruitful area of research.
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Serial human blood samples This paper N/A

Serial human white adipose tissue biopsies This paper N/A

Critical Commercial Assays

Paxgene RNA Tube PreAnalytiX Cat# 762165

Human Insulin-Specific RIA Merck Millipore Cat# HI-14K

RNeasy Mini Kit QIAGEN Cat# 74106

AffinityScript Multi Temperature cDNA Synthesis Kit Agilent Technologies UK Cat# 200436

LabChip RNA 6000 Nano kit Agilent Technologies UK Cat# 5067-1511

Oligonucleotides

Primer/probe sequences for PER3 and BMAL1 [18] https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2398752/

Primer/probe sequences for PER2 This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jonathan

D. Johnston (j.johnston@surrey.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ten male participants, 18-30 years old, were recruited to meet the following inclusion criteria: 20R BMI% 30 kg/m2 and fat massR

14%, Horne-Östberg (HÖ) questionnaire [40] 30 > HÖ < 70, completed Munich Chronotype Questionnaire (MCTQ) [41], Pittsburgh

Sleep Quality Index (PSQI) [42]% 5, Beck Depression Inventory (BDI) [43, 44]% 9 and Epworth Sleepiness Scale (ESS) [45, 46]% 9.

The recruited participants had average age and BMI of 22.9 ± 1.27 and 23.1 ± 0.80 (mean ± SEM), respectively. Participants

had regular sleep patterns on 5 or more nights per week (bed time 22:00-01:00 hr, wake up time 06:00-09:00 h), a sleep duration

of 7-9 hr and habitual caffeine intake % 300 mg/day. Absence of cotinine and drugs of abuse was checked by a urine test, and

absence of alcohol by a breath test. All participants were free of medical conditions and/or medication known to affect study param-

eters. They also had normal blood hematology, biochemistry and serology. All study procedures received a favorable ethical opinion

from The University of Surrey Ethics Committee. The study and data processing were carried out in accordance with the Helsinki

Declaration of 1975, as revised in 2008, and the UK Data Protection Act (1998). All participants gave written informed consent

after the nature and possible consequences of the study were explained.

METHOD DETAILS

Pre-laboratory study period
Participants were required to keep a self-selected regular 8 hr sleep period for 10 days prior to the start of the laboratory protocol.

Self-selected sleep periods were based on habitual sleep patterns, as reported in PSQI andMCTQ data. Participants were permitted

a nap during a 4 hr afternoon window, asked to obtain morning natural light exposure, and required to confirm behavior using voice-

mail, sleep diaries and light-sensitive actiwatches, as described previously [47]. For 1 week prior to the study, participants were

asked to complete a food diary, consume% 100 mg caffeine in the first 3 hr after waking, and% 2 drinks of alcohol per day. Break-

fast, lunch and dinner were consumed 0.5, 5.5 and 10.5 hr after waking. For 72 hr prior to the laboratory session, food was provided

for the participants to eat at home and eaten within the same time windows as the preceding 4 days. Participants were also asked to

refrain from heavy exercise, alcohol and caffeine over these final 72 hr.

Laboratory study design
All participants undertook a 13-day laboratory protocol (Figure 1). Throughout the laboratory protocol, each participant wore an

ActiwatchL (Cambridge Neurotechnology Ltd) on their non-dominant wrist in order to provide an objective analysis of sleep markers

during the sleep opportunities. Upon admission, continuing eligibility was assessed and repeat tests performed for breath alcohol,

cotinine and drugs of abuse. During days 0-3 participants remained on their self-selected sleep-wake cycle and received meals 0.5,
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5.5 and 10.5 hr after waking up. Breakfast, lunch and dinner were identical in energy and macronutrient content, with energy require-

ments determined using the Schofield equation. The macronutrient content of the meals was: 55% carbohydrate, of which 15%was

sugars; 15% protein; and 30% fat, of which 11% was saturated. Participants slept in individual bedrooms. During the day partici-

pants were free to move around in bright room light (�500 lux in direction of gaze), but were not permitted to undergo any excessive

exercise and were predominantly seated. Meals were eaten in the individual bedrooms to eliminate the impact of the smell and sight

of other participants’ food. On day 4, participants were cannulated after waking and remained in dim light until they began a 37 hr

constant routine (CR1) in individual rooms. During the constant routine, participants were kept awake in a semi-recumbent posture

in dim light (< 8 lux in the direction of gaze) and received hourly isocaloric sandwiches andmilkshakes. Individual energy requirements

during the constant routine were again determined using the Schofield equation. Participants were allowed to consume % 100 mL

water with each hourly meal except in the 10 min preceding a sample. A modified version of the Karolinska Sleepiness Scale [48, 49]

followed by visual analog appetite scales [50] were completed before each meal. After the constant routine, participants had a stan-

dard night’s sleep and underwent 6 more days of the sleep/wake light/dark cycle (day 6-11). Conditions were equal to days 1-3

except for a 5 hr delay in all meal times. A second 37 hr constant routine (CR2) then commenced on the morning of day 12, following

the same procedure as for the earlier constant routine.

Biopsy and blood sample collection
To allow for a ‘wash out’ of any pre-constant routine effects of sleep, posture and food, sampling started at least 5.5 hr after the start

of the constant routine. Using a modified version of our previous method [16], five serial gluteal subcutaneous white adipose tissue

(WAT) biopsies were collected every 6 hr into cryotubes, frozen within 5 min in liquid nitrogen and stored in �80�C. Blood samples

were taken via a cannula over a 32 hr period. Blood was collected hourly into lithium heparin vacutainers for analysis of melatonin and

cortisol, as well as into di-potassium EDTA vacutainers for measurement of glucose, lipids and additional hormones. Immediately

upon sample collection, vacutainers were inverted 10 times and cooled until centrifugation (1620 g at 4�C for 10 min, within

30 min of collection). The plasma fraction was transferred to microcentrifuge tubes, within 50 min of collection, and stored

at �20�C. Blood samples for leukocyte clock gene expression were taken 2-hourly in PAXgene Blood RNA tubes (PreAnalytiX),

as previously described [18].

Actigraphy measurements
Data from actiwatches were down-loaded and analyzed using CNT Sleep Analysis software (Cambridge Neurotechnology Ltd,

Papworth Everard UK). Specific parameters assessed were: sleep duration, sleep efficiency, sleep latency and fragmentation index.

For each participant, the average of each parameter was calculated for the 3 nights before each constant routine to represent that

individual’s sleep when experiencing early and late meal times. Data from one of the ten participants were excluded due to abnormal

baseline values reported by the actiwatch.

Plasma hormone and metabolite measurements
Glucose and triglycerides were measured by enzymatic colorimetric detection in the Ilab (Instrumentation Laboratory, Warrington,

UK) and hormones (melatonin, cortisol and insulin) were measured as described elsewhere [47, 51, 52]. Inter-assay CVs were <

10% for glucose and TAG; between 8.1 and 12.8% for melatonin; between 7.5 and 11.0% for cortisol; and < 20% for insulin.

Gene expression measurements
RNAwas extracted from approximately 100mg adipose tissue using the RNeasymini kit (QIAGEN Ltd, Crawley, UK) according to the

manufacturer’s instructions. Leukocyte total RNA was extracted as previously described [18]. The RNA concentration and purity of

each sample was assessed using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Massachusetts, USA) and the integrity

was measured with the Agilent 2100 Bioanalyzer LabChip RNA 6000 Nano kit (Agilent Technologies UK Ltd, Cheadle, UK) in approx-

imately 15%of samples. RNAwas then stored at�80�C. cDNAwasmade by random-primed reverse transcription of 100 ng adipose

RNA or 200 ng leukocyte RNA with the AffinityScript Multi Temperature cDNA Synthesis Kit (Agilent) at a synthesis temperature of

42�C. cDNA was stored at �20�C.
We initially chose to analyze PER3 and BMAL1, as these are representative of the ‘positive’ and ‘negative’ clock gene loops, and

the genes that exhibited the most robust whole blood circadian rhythms in our hands [18]. We also analyzed the related canonical

clock gene PER2 in WAT samples. RT q-PCR was carried out with the Brilliant III Ultra-Fast master mix and ROX reference dye

(Agilent, Mx3005P). PER2 primers and probes were 50-AAGCCCACATCACATCTCC-30 (PER2-Forward), 50-CACTGCACCCCTG

AAAATAC-30 (PER2-Reverse), [FAM]ACTCAGTCTGACAGCTTGCGACTGCAT[BHQ1] (PER2-Probe). All other TaqMan gene specific

probes and primers have been reported previously [18]. All samples were run in triplicate. The thermal profile consisted of 3 min at

95�C followed by 15 s at 95�C and 20 s at 60�C (40 cycles). Ct values were calculated with an automated, amplification based

threshold, adaptive baseline andmoving average inMxPro v4.10 (Stratagene). Relative gene expression was then calculated accord-

ing to theDDCtmethod.Within each triplicate outliers were removed if the difference between replicate and triplicatemean exceeded

2SD of differences within a gene.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The phase of the melatonin rhythms was calculated as the 25% dim light melatonin onset (DLMO), i.e., the time at which melatonin

reaches 25% of the peak concentration [53]. Melatonin and cortisol data were plotted relative to clock time, whereas all other data

were plotted relative to each individual’s DLMO in that constant routine. Data were grouped into time bins, the sizes relative to the

sampling frequency for that parameter; 1 hr for melatonin, cortisol and subjective measures, 2 hr for blood gene expression, plasma

glucose, TAG and insulin, and 4 hr for adipose gene expression.

Analysis of all temporal profiles was first carried out using a 2-way repeated-measures ANOVA, with time of day andmeal schedule

as the two independent variables, both of which were repeated-measures. Circadian phase for melatonin in each participant was

assessed using DLMO, as described above. Phase assessment for other parameters was estimated by deriving acrophases

(peak times) from cosinor analysis. The effect of the delayed meals on that measurement’s acrophase was assessed by a paired

t test of individual phase; the test was one-tailed when a one-directional effect, i.e., a delay, had been hypothesized.

Paired t tests were also used to compare the average concentrations of plasma glucose, insulin and triglyceride. The peak con-

centration of a glucose rhythm was estimated by calculating the mean average of the numerically highest value within each data se-

ries and its two immediately adjacent time points. Similarly, the lowest concentration was estimated by averaging the numerically

lowest value and its two immediately adjacent time points. Average peak and trough concentrations in the two constant routines

were analyzed by 2-way repeated-measures ANOVA.

In order to minimize type 1 statistical errors (i.e., false positives), Bonferroni corrections were applied to critical p values. For anal-

ysis of plasma molecules (melatonin, cortisol, glucose, insulin, triglyceride), a correction factor of 5 was employed, resulting in a crit-

ical p value of 0.01. For analysis of adipose gene expression (PER2, PER3, BMAL1), a correction factor of 3 was employed, resulting

in a critical p value of 0.017.

Data are provided as both grouped and individual values. Grouped data are presented as mean ± SEM, with relevant n values

described in the figure legends. Analyses were performed using Graphpad Prism 7.0 software.
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